Meet the team: Rosy Heywood

Posted on

Rosy Heywood is a Research Associate at The Centre for Print Research (CFPR) at UWE. In this interview, she discusses her work as a sustainable textiles designer & researcher, and her role in the Healthy Waters research cluster.

Could you tell us a bit about your background and how you came to work in your current area?

I studied a MA in Design at UWE, during the pandemic. I started in 2019 and graduated last year, and my tutor, Dr Laura Morgan, was working at CFPR – the Centre For Print Research – which is the department that I’m working in now. She hired me as a Research Associate on a natural dyeing and laser engraved biomaterials project because my MA project was very relevant, I had focused on textiles and sustainable materials and specifically natural dyeing. So, when this project came along with Healthy Waters, it overlapped with the natural dyeing work that I did; you can’t get away from the amount of water and the toxicity of water that synthetic dyes use, so sustainable water management was an area that I was already very interested in.

So, about a month after the project with natural dyes finished, Tavs [Dr Tavs Jorgensen, Associate Professor and AHRC/RCUK Innovation Fellow] got in contact with me about the Healthy Waters project. And I thought, ‘Wow, this sounds exciting’. Ceramics is a slightly new area for me – I did do some on my Master’s, because when you first start you have to do a lot of different workshops in different areas of design – but it’s been really great to be picking up a new skill and starting to become a bit more of an expert in it. Sonny [Sonny Lee Lightfoot, Research Assistant and Product Design Technician] and Tavs have been brilliant, I’ve been able to pick up lots of skills in ceramics. For me, I’ve come into this with my design training and my design thinking, and it’s been amazing to apply that in a new, fresh area.

It’s been really interesting to hear how the arts and science departments have been collaborating on this project. What’s the experience been like for you, leaning further towards the technical scientific elements of the project?

Sadie, a MSc student who has been using our ceramic beads to test for biological filtration, produced a chart of how well our ceramic media did during filtration and it was great to see the results from our combined work; it’s made me really interested in how I can ‘science-ify’ my research and improve that aspect of it. I’m looking into doing a PhD and I’d like to move towards a material science or textile science direction – that’s something which is happening in the CFPR anyway, we have the graphene lab and the researchers based there have great expertise in material sciences.

Sometimes when you’re creative, you get so embedded in the design or art of something, it’s easy to forget other aspects. So when you’re able to merge it with science, it opens up a new way of thinking around design – going forward, this project is definitely going to change the way I think about designing.

You mentioned earlier that you did your masters throughout COVID lockdowns – what was that experience like for you?

It was difficult because it’s a very practical course. A lot of it was things we’d have to be on campus for, to use the workshops. Initially I was doing a lot of digital embroidery, for example, and that had to be done on campus – I can’t just buy a digital embroidery machine at home! So that definitely changed my path into a different area for my Master’s; I came into it thinking I was going to be doing digital embroidery and art installations, which became increasingly more difficult. So, I chose to do something I could do from home: natural dyeing. My work organically grew into more of a research project. Dyeing was something I could do at home and I was really interested in learning more and experimenting with it. I think in a way COVID kind of made me realise a different path that I wasn’t expecting to go on and brought me to where I am now – even though it was a very difficult time to be stuck at home, it forced me to think a lot more about what exactly I enjoyed doing and what I am good at.

It sounds like the new route you’ve been taken down is pretty great – the Healthy Waters project seems to have a lot of potential to make a big difference in the world!

Definitely. At the beginning of my Master’s, I hadn’t thought much about the importance of the work I was creating. I was only thinking, ‘What do I want to create’ rather than considering the bigger picture. But in research, you have to think about an important question that you want to solve and the solutions often involve other people and everything going on around you; I found my focus in sustainability because it’s so important today. What we’re doing now on the Healthy Waters project is creating a very sustainable method of cleaning water and my work with the CFPR is creating ceramic vessels and media for biological filtration.

Your MA focused on sustainable design as well, do you think you’ve always had that drive to protect the environment or has that grown as you’ve encountered a more scientific angle to work?

It’s hard to avoid it – you see so many statistics, and real-life instances, like this heatwave we’re having, and you see the need for sustainable solutions and change all around you. I think before my MA I hadn’t really thought that I could merge that into my design practice but in the project that I did, about natural dyeing, I started trying to create a more circular method of production. I worked on techniques to use plants to dye biodegradable materials. In essence, they could be buried back into the soil to break down, and the dyes could be naturally disposed of since they’re plant-based and non-toxic to the environment – it’s essentially diluted plant waste returning its nutrients to the ground. That research flowed really nicely into what I’m doing now, creating clean water. It’s been fascinating to hear how they test the water, what they find in the water, and how to deal with it – especially biological filtration, which I didn’t know much about as a method of cleaning water before I joined this project.

One of the Healthy Waters project’s aims is to support low-middle income countries with the technology you’re developing – does that add an extra source of motivation for you?

Definitely. It’s those things that are the most motivating in your work; that’s something that I’ve discovered recently in my professional experience as a researcher, but also in my MA: having motivation is so important in your work and working in such a crucial and important area only motivates me more. It’s inspiring, really.

[You can read more about the goals of the Healthy Waters project on their blog post here!]

You’ve mentioned you’d like to go on to do a PhD. What do you hope the future has in store for you in that regard?

That’s something that I’ve been trying to work out for myself because often to get further in academia, you need to do a PhD. I’m working with a few people at CFPR to figure out what I want to do, what I’d want my research question to be – what I’d want to discover, because a PhD is really all about learning and finding something that needs a solution created. It’ll definitely be in the sustainable materials or sustainable textiles range related to that circular economy I mentioned earlier. But the experience I’ve had now on Healthy Waters has been really great, getting to hear from scientists and work alongside them, to have that new experience for my PhD where I can relate scientific backing to my work. I haven’t got a solid answer but my goal is really to stay at the CFPR, to work on more research projects – there’s always more stuff coming up! I’d love to work with more people at UWE, there are so many people with so many different skills and areas of expertise, and I’d love to branch out and work with people from different departments.

You can connect with Rosy on her website and via her LinkedIn profile.

Rivers are Drying Up All Over the World: what can we do about it?

Posted on

Image caption: Map 1:  Water level situation of rivers and streams in part of southwestern England (riverlevels.uk)

By Chad Staddon, Sun Shun and Stevie Miller

As of mid-2022, water levels across the world are lowering due to a long-term drying/heating trend.  Rivers in parts of the UK are rapidly approaching low levels not seen since the historic 1976 drought, when the country saw temperatures exceeding 32°C for fifteen days with the nation’s highest ever recorded temperature reaching 35.9°C in Cheltenham. But now, the Met Office has issued its first Red Warning for heat, indicating a danger to life – but it’s not just the intensity of this heatwave that’s raising alarms. The frequency of heatwaves like this across the world speaks to the influence of human activity on global climates; record after record is being broken as years go by and climate change’s results become more apparent.

The impact of new peak temperatures is not just a family trip to the beach or day without rail travel. The worldwide repercussions of rising temperatures can be seen in examples such as Lake Mead, the almost-dry reservoir behind the iconic Hoover Dam in the US southwest, which is perhaps 100 days from being too low to produce hydroelectricity. Historic low flows in many parts of Australia are contributing to ever worsening fire seasons, a troubling pattern also seen as wildfires rage in parts of France, Spain and Portugal.

Here in the southwest of England we are experiencing an intensifying drought trend. The recent heat – as lovely as some summer warmth has been – has been problematic beyond just an uncomfortable lack of air-conditioning. Map 1 seems to show that whilst many stream flows are significantly below baseline averages (red or yellow dots), many seem to be doing okay (green symbols). But a closer look reveals a more complex picture.

Covering only the area around Bristol and Bath, Map 2 shows that even “green” stream flows tend to be only at or near normal levels for this time of year.  Few streams are experiencing rising flows over any time horizon.  Rather than being truly “healthy waters”, our rivers and streams are under a variety of threats that are combining to reduce average flows, impacting flora and fauna and human communities.  

That’s not all: surface stream flows are only part of the story of our drying environment. During June groundwater levels receded in all aquifers – generally either just reaching normal levels or sinking below (with some notably low levels) – reflecting the prolonged period of below average rainfall and increasing soil moisture deficits.  Similarly, reservoir levels fell, and although some increased relative to average (e.g., in western Scotland and Northern Ireland), others in the midlands (Derwent Valley), southwest (Colliford and Wimbleball), and Wales (Brianne and Elan Valley) were significantly lower than average.  Our reservoirs are not yet as dangerously low as Lake Mead, but they are low enough that we may soon have mandatory water restrictions in some areas.

So, what can we do about the parlous state of our water resources? Certainly we must not give in to the temptation to believe that somehow the winter rains will save us, or that if recent years have been drier than average then surely coming years will be wetter and it will all come good. This is “magical thinking” and divorced from what the science of climate change is telling us. The longer-term climate trends suggest that our rains will be ever more unpredictable across the year and because surface and groundwater storage is limited, even periods of heavier than average rain may not help improve our water balance. We must also not sell ourselves the notion that new technologies, such as desalination or wastewater recycling, will save the day.  Both are wonderful technologies, but they require considerable energy and capital inputs as well as producing waste outputs (e.g., brine) that are difficult to sustainably manage.

Really, it is to ourselves that we need to look for solutions to a deteriorating water supply-demand balance. It is said that the “average” water user in the UK uses 140-160 litres per person per day, though our research suggests that the actual range of water use is from approximately 100 to 250 litres per day. By better understanding who is using what volumes of water, for what reasons and under what conditions, it is possible to design demand-reduction policies that are effective and fit for purpose. This is where the future of water management needs to be. This is how we will save our dwindling water sources.

Source: Centre for Ecology and Hydrology (2022) Hydrological Summary for the United Kingdom, June 2022

How to measure water security?

Posted on

Photo: Figure 1. Haitians queue for water in Carrefour-Feuilles Slum. The experiential scale-based metrics attempt to capture other sides of water (in)security, such as the burden associated with queuing for water. Photo by United Nations Photo

This blog is a summary of a published open access article: Octavianti and Staddon (2021). A review of 80 assessment tools measuring water security. WIREs Water. https://doi.org/10.1002/wat2.1516


Adapted by Dr Thanti Octavianti

There are many definitions of water security. It could simply refer to water for domestic use, such as for drinking and cooking, or it could mean water in every aspect of life, including water for the environment, water for economic development and water associated with hazards, such as floods and droughts.

These diverse conceptions also lead to different methods to measure water security. Chad Staddon and I systematically reviewed 107 publications proposing methods and tools to measure water security, and we found:

  1. There are two dominant research clusters in the field:
    • metrics that are based on the physical availability of water with measurement ranging from municipal to global scale and usually expressed in a volumetric unit. We group them as “resource-based metrics”.
    • metrics that are based on people’s experiences with water, usually measured at individual or household level and asking, for example, if one has worried about water or if one has had to change their plans because of their water situations. We group them as “experiential scale-based metrics”.

The former cluster is bigger compared with the latter, which is emerging.

  1. Both clusters are quite distinct in their characteristics. For example, resource-based metrics were mostly formulated by natural scientists and engineers. Domains of measurement vary from metrics solely focusing on freshwater resources to some with a very broad focus (to include water-related disasters, biodiversity, among others).

On the contrary, most experiential scale-based metrics have strong social science elements in them. Water supply and hygiene and their relations to well-being are the main domains being measured.

By understanding the landscape, we argue that the more local the level of measurement and the more specific water domains included, the more meaningful and actionable recommendations would be.

Finally, measuring water security is a resource-intensive process. Selecting which approach to use will be based on the purpose of the investigation and scholarly interests, and we hope this paper would be able to help researchers and practitioners make some informed choices when developing or using a water security metric.

Short bio:

Dr Thanti Octavianti is a Lecturer in Applied Geography, Department of Geography and Environmental Management, UWE Bristol. She is a social scientist with research interest in water security measurement and urban flood resilience.

Safe Water and Antimicrobial Solutions for Resource Constrained Healthcare Facilities

Posted on

Written by Dr Gillian Clayton, Centre for Research in Biosciences, Faculty of Health and Applied Science

Humanitarian settings, such as refugee camps, require consistent access to safe, high-quality water, but this can be difficult due to complex supply chains. If supply chains are interrupted or delayed, vital clinical solutions like sterile saline used to wash out wounds, and antimicrobials, such as hypochlorous acid, used to disinfect instruments and wash wounds are essential to ensure patient safety. Typically, clinical fluids (e.g. sterile saline and antimicrobials) are produced, packaged and transported in a ‘centralised’ manner. For example, solutions may be produced in the UK and then held at a storage facility/warehouse, before being transported via land, air and/or sea to the healthcare facility.

However, the Redistributed Manufacturing in Healthcare Network has investigated the potential to allow for clinical fluids to be produced on-site and on-demand, minimising the need for storage and transportation. A proof-of-concept project lead by UWE in collaboration with The Usher Institute (University of Edinburgh), Centrego Ltd, Portsmouth Aqua Ltd, The Royal College of Surgeons of England and Water for People and Peace investigated “The On-Demand Manufacture of Potable & Sterile Water for Emergency Medical, Humanitarian & Healthcare Applications Using Electrochemical Activation Production Technologies”. This project developed, adapted and repurposed Electrochemically Activated technologies for the on-demand production of clinical fluids for healthcare facilities in resources constrained environments. This project demonstrated that simple, low-cost and low-energy technologies can produce sterile solutions from tap or bottled waters, as well as produce a high-quality antimicrobial solution (hypochlorous acid) from a small-scale portable generator. These prototype technologies have shown that remote or resource constrained healthcare facilities can be adaptive and more resilient in a changing world through decentralised production, or redistributed manufacturing.

The low-cost and low-energy small-scale portable prototype generators, designed to produce sterile solutions from tap or bottled waters (top), as well as a high-quality antimicrobial solution (bottom)

Back to top