Testing Ceramic Methods for Producing Beads for Biofilm Water Treatment

Posted on

By Rosy Heywood, Research Associate at Centre for Print Research.

Main image: Fig 1: Boxes of organic foam impregnated ceramic beads and plain ceramic beads adjacent to a pot of traditional beads

In a previous blog post, by my colleague Sonny Lightfoot, we introduced the research being conducted into creating ceramic beads as a medium to grow biofilm within a water filter. We have now created 3 types of ceramic beads which have been tested for water filtration; organic foam impregnating method, clay and sawdust burn off method and plain ceramic. For each method we used the same terracotta clay, made the beads into 20mm pieces, and fired the beads at the same max kiln temperature of 1100˚.

Organic foam impregnating method

For this set of beads we laser cut compressed cellulose sponge into 20mm circles, expanded them in water and dipped them into clay slip. The beads were then left to dry and fired. During the firing process the sponge burns off leaving the porous structure behind. This method has been used to test beads with high porosity and high surface area creating lots of sites for the biofilm to grow onto.

Figure 2: Dipping laser cut sponges into terracotta clay slip

Sawdust and clay method

For this set of beads we mixed fine sawdust with clay at a 5:3 ratio. We are currently experimenting with the best ratio and method of mixing but to produce these beads we mixed by hand initially then used an electric mixer to fully combine the two components. We then extruded the clay using a hydraulic extruder into lengths and cut using a 3D printed jig into 20mm pieces. The beads were then left to dry and fired. During the firing process the sawdust burns off leaving a porous structure behind. This method has been used to test beads with high porosity.

Figure 3: Freshly extruded and cut sawdust and clay beads before firing

To produce the plain ceramic pieces we used the same method as above but without adding the sawdust. This method will test the effectiveness of the natural porosity of ceramic.

After firing we then tumbled the beads in a ball mill to smooth the edges. The beads were then dried in an oven and tested for effectiveness by MSc student Sadie Hadrill and PhD candidate Josh Steven in the science labs on Frenchay campus. Stayed tuned for another blog post coming soon where Sadie and Josh detail their process and results from the testing.  

Developing the methods and experimental work

Since creating these beads, the team and I in the CFPR labs have been experimenting with ways of combining sawdust with clay in large batches and the ratio of sawdust to clay. We have also been furthering our design research by modelling a coil pot from sawdust clay to test it’s suitability for pot making and experimenting with high surface area to low volume shapes using the organic foam impregnating method. These shapes could be tessellated or interlocked to create a unique structure for a vessel to naturally purify water using the biofilm method. The idea is to create a uniquely beautiful and practical container to filtrate water with the design inspired by natural biomorphic structures that can tesselate into user determined patterns and shapes. This experimental research is at its early stages and will slowly develop over the course of the project alongside our bead and porosity testing.

Figure 8: Organic foam impregnated ceramic tessellating shapes experiment

Changing water dynamics in uncharted regions

Posted on

By Dr Kwok Chun

Environmental datasets provide critical information about our physical environment, helping us to monitor progress towards achieving global environmental targets, such as the United Nations Sustainable Development Goals (SDGs). Yet, reliable climate and water data are not available in many parts of the world. In many developed countries, such as the UK and US, there are dense environmental monitoring networks. However, these networks are expensive to establish and maintain. Where on-the-ground data is not readily available, satellite images can help us to fill gaps in data. Moreover, as well as helping us to monitor current conditions it is possible to use remote sensing (RS) datasets to predict future environmental conditions.  Even more to the point, such RS-based analyses can help us understand potential climate change threats to ongoing efforts to achieve SDGs, such as SDG6: Clean Water and Sanitation for All.

For example, in many parts of East Africa, including Uganda, water services development includes options for rainwater harvesting (see Staddon et al, 2018 and Healthy Waters blog, 11/4/2022).  Yet, many climatic factors, such as air temperature, affect household water generation potential from rainwater harvesting as higher temperatures increase water loss from evaporation. If we compare historical air temperature averages (1970-2000) in Uganda with those projected for 2070 (Figure 1), it is clear that without significant change, water loss due to increased evaporation could undermine water harvesting efforts.

Figure 1: Comparison of average historical (1970 to 2000) and projected (2070) temperatures (°C) in Uganda (WorldClim, 2022).

To prevent a global crisis, most governments are committed to keeping the average temperature increase at less than a 1.5°C, yet the projections for Uganda indicate temperatures are consistently expected to increase well above this target (Figure 2). This indicates that country-wide water action is urgently needed.

In regions where the temperature increase is projected to be 5°C or more, this could result in significant evaporation loss (approximately equivalent to the volume of an Olympic-sized swimming pool per year).  Efforts should be focused on collaborating with local communities to combat potential increases in climate change related water stress, especially in Uganda’s Eastern Region, which is expected to see the highest average temperature increase by 2070 (Figure 2).

Figure 2: The projected changes in temperature (°C) between average temperatures taken between 1970 and 2000, and 2070.

A limitation of some modelled environmental datasets is their coarse spatial resolution (e.g. each pixel in Figure 2 is 50km by 50km). This is therefore not high enough resolution to allow for local projections that could inform water planning.  To further explore how possible climate change scenarios will affect local environmental conditions, UWE Bristol staff and intern students have collaborated with the University of Rouen Normandy. This collaboration has allowed the for the creation of numerical models to simulate local weather conditions to better investigate African water issues, that help to provide real-life solutions for problems such as rain harvesting. If such numerical models successfully simulate the regional climate conditions, the team hopes to conduct water trials with local communities to generate safe and healthy waters.

Healthy Waters Research Cluster sets sights on four research challenges

Posted on

When it comes to healthy water there is no shortage of challenges – indeed the difficulty is often in finding sufficient focus to not feel paralysed by the extent of problems. In April, UWE Bristol’s Healthy Water Research Cluster did just that. On a Friday afternoon, in a room kitted out for the training of primary educators – complete with thrones and creative mobiles – researchers from across disciplines as varied as engineering, biosciences, creative industries, science communication, economics and supply chain management came together to identify research priorities for the cluster.

Over the coming months, UWE Bristol’s Healthy Water research cluster will be developing the following project ideas:

Managing Water Resources through Smart Landscapes

Data is collected for water systems all over the world by different organisations and for different purposes. The challenge is that these data sets are not integrated and not always accessible – even within a single country let alone across borders. As technology moves on there are additional challenges around integrating data from old technology with that of the new. Imagine having integrated data sets at a landscape level, where industry, government, researchers and communities can interact with data to improve ecosystem resilience, exchange knowledge and engage communities in their local environment.

Management of water quality through community-based value chains in water technology

Innovation in water treatment technologies is important but not enough – we also need to create localised production systems that are sustainable and take into account the whole life cost of the process, including maintenance, final disposal, recycling or reuse.  This workstream focuses on articulating models for creating affordable community-based value chains, that build on the use of local, readily available materials and expertise, employing water technologies such as ceramic filters, rainwater harvesting systems and gravity supply schemes.

Development of rapid water quality assessment technologies

New advances in water quality monitoring strategies are urgently needed for both water catchments and drinking water supplies. Improved temporal and spatial water quality data will require new and multiple real-time monitoring technologies and approaches that enable rapid chemical and biological assessment at a single point-source or through an integrated catchment network. Such data is imperative if effective water quality management frameworks are to be implemented and realised.

Scalable and sustainable water treatment solutions and technologies

Safe water in the context wastewater or drinking water is essential in minimising potential contaminants and pollutants from entering water systems or reducing the possibility of disease in humans. Many current treatment solutions or technologies are centralised in nature, where a large-scale facility will treat vast volumes of water across a large area and then distribute throughout extensive networks where necessary. This is a costly approach to build and maintain and is unattainable for some communities, such as rural communities or communities in low-income countries. Developing scalable and sustainable solutions that are decentralised and can be easily maintained by communities, with minimal resource requirements are key to ensuring waters are reliably treated to a high standard.

The Healthy Waters research cluster is looking to engage with people interested in these projects – other researchers, industry, government agencies, NGOs, community organisations and other stakeholders. Please do get in touch research@uwe.ac.uk for more information.

Running, safe water

Posted on

Written by Bethany Fox, Research Associate in Centre for Research in Biosciences (CRIB)

Access to safe water should be a basic right for all. Turning on a tap to drink from seems so natural to many of us, but with 1 in 3 people around the world not having access to safe drinking water, there is still much to be done. The COVID-19 pandemic has only further highlighted the importance of clean water, sanitation and good hygiene, with those without access to water being disproportionately vulnerable.

Frank Water is a Bristol-based water charity that began life in 2005 as a social enterprise which donated all profits to an NGO in India for water projects. It is now a registered charity providing safe water, sanitation and good hygiene to communities in India and Nepal, helping almost 500,000 people to date. Frank also works within the UK providing education regarding sustainable approaches to water.

UWE Bristol has an ongoing relationship with Frank Water and have been actively working together on a NERC-DST India-UK Water Quality project for the past 4 years. This project focused on the development and implementation of technologies for improved water quality.

One of the key aims within this project was to provide a low-cost small-scale sustainable technology to treat biologically contaminated stored water, such as that from a borehole or harvested rainwater. Working with Frank Water, Indian NGO Bala Vikasa and technology partner Centrego, we have begun the deployment of two prototype systems: one in a government school in Hyderabad, Telangana, to ensure a safe supply of drinking water for the school children and staff; and, a second system in Massampally, a remote tribal village in the Warangal district of Telangana, where the systems are treating water from a contaminated open well to provide a source of safe drinking water to the village’s 33 households which rely on this well for all their water, sanitation and hygiene needs.

Having seen first-hand the amazing work undertaken by Frank Water Projects and their collaborators in India, UWE researcher Dr Bethany Fox has chosen to fundraise for Frank Water by running the Bristol Half Marathon in September 2022. This will be Bethany’s first half marathon but she hopes to raise awareness and money to support Frank Water and the amazing work they do.

Back to top